
Pruning in Ordered Bagging Ensembles

Gonzalo Mart́ınez-Muñoz gonzalo.martinez@uam.es
Alberto Suárez alberto.suarez@uam.es

Escuela Politécnica Superior, Universidad Autónoma de Madrid, F. Tomás y Valiente, 11, 28049 Madrid, Spain

Abstract

We present a novel ensemble pruning method
based on reordering the classifiers obtained
from bagging and then selecting a subset for
aggregation. Ordering the classifiers gener-
ated in bagging makes it possible to build
subensembles of increasing size by includ-
ing first those classifiers that are expected
to perform best when aggregated. Ensemble
pruning is achieved by halting the aggrega-
tion process before all the classifiers gener-
ated are included into the ensemble. Pruned
subensembles containing between 15% and
30% of the initial pool of classifiers, be-
sides being smaller, improve the generaliza-
tion performance of the full bagging ensemble
in the classification problems investigated.

1. Introduction

The construction of classifier ensembles is an active
field of research in machine learning because of the
improvements in classification accuracy that can be
obtained by combining the decisions made by the units
in the ensemble. Ensemble generation algorithms usu-
ally proceed in two phases: In a first step a pool of
diverse classifiers is trained or selected according to
some prescription. Different prescriptions lead to dif-
ferent types of ensembles (bagging, boosting, etc. (Fre-
und & Schapire, 1995; Breiman, 1996a; Dietterich,
2000; Webb, 2000; Breiman, 2001; Mart́ınez-Muñoz
& Suárez, 2005)). In a second step, a combiner ar-
ticulates the individual hypotheses to yield the final
decision.

An important drawback of classification ensembles is
that both the memory required to store the parame-
ters of the classifiers in the ensemble and the process-

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

ing time needed to produce a classification increase
linearly with the number of classifiers in the ensemble.
Several strategies have been proposed to address these
shortcomings. One approach is to prune the ensem-
ble by selecting the classifiers that lead to improve-
ments in classification accuracy and discarding those
that are either detrimental to the performance of the
ensemble or contain redundant information (Domin-
gos, 1997; Margineantu & Dietterich, 1997; Prodro-
midis & Stolfo, 2001; Giacinto & Roli, 2001; Zhou
et al., 2002; Zhou & Tang, 2003; Bakker & Heskes,
2003; Mart́ınez-Muñoz & Suárez, 2004). Besides be-
ing smaller, pruned ensembles can perform better than
the original full ensemble (Zhou et al., 2002; Zhou &
Tang, 2003; Mart́ınez-Muñoz & Suárez, 2004).

Pruning an ensemble of size T requires searching in the
space of the 2T − 1 non-empty subensembles to mini-
mize a cost function correlated with the generalization
error. The search problem can be shown to be NP-
complete (Tamon & Xiang, 2000). In order to render
the solution feasible various heuristic methods for en-
semble pruning have been developed. In (Margineantu
& Dietterich, 1997) several heuristics are proposed to
reduce the size of an adaboost ensemble. This study
reports reductions up to 60-80% of the full ensemble
without a significant increase in the generalization er-
ror. In (Zhou et al., 2002; Zhou & Tang, 2003) the
selection of the classifiers is made using a genetic algo-
rithm. This procedure reduces the size of an ensemble
composed of 20 trees to 8.1 trees (on average) slightly
reducing the error of the full bagging ensemble (3% on
average). Other techniques aim to emulate the full en-
semble by building new classifiers: In Ref. (Domingos,
1997) the full ensemble is replaced by a single classi-
fier trained to reproduce the classification produced by
the original ensemble. The objective is to build a com-
prehensible learner that retains most of the accuracy
gains achieved by the ensemble. A further processing
of this emulator can also be used to select the ensemble
classifiers (Prodromidis & Stolfo, 2001). This article
shows that the size of the ensemble can be be reduced
up to 60-80% of its original size without a significant

Pruning in Ordered Bagging Ensembles

deterioration of the generalization performance of the
pruned ensemble. Adopting a different strategy, one
can apply clustering to the classifiers/regressors in the
ensemble and select a single representative classifier
for every cluster that has been identified (Giacinto &
Roli, 2001; Bakker & Heskes, 2003).

Our approach to ensemble pruning is to modify the
original random aggregation ordering in the ensemble
assuming that near-optimal subensembles of increas-
ing size can be constructed incrementally by incor-
porating at each step the classifier that is expected
to produce the maximum reduction in the generaliza-
tion error (Margineantu & Dietterich, 1997; Mart́ınez-
Muñoz & Suárez, 2004). After ordering, only a frac-
tion of the inducers in the ordered ensemble is retained.
The pruned ensemble obtained in this manner shows
significant improvements in classification accuracy on
test examples.

In this work we propose a new criterion to guide the
ordering of the units in the ensemble. The goal is
to select first those classifiers that bring the ensemble
closer to an ideal classification performance. In or-
der to accomplish this, each inducer is characterized
by a signature vector whose dimension is equal to the
size of the training set. The components of this vector
are calculated in terms of the error made by the corre-
sponding classifier on a particular labeled example (+1
if the example is correctly classified, -1 if it is incor-
rectly classified). The classifier is then incorporated
into the ensemble according to the deviation of the
orientation of the corresponding signature vector from
a reference vector. This reference vector represents
the direction toward which the signature vector of the
ensemble (calculated as the average of the signature
vectors of the ensemble elements) should be modified
to achieve a perfect classification performance on the
training set. In an ensemble of size T , the ordering op-
eration can be performed with a quick-sort algorithm,
which has an average running time of O(T log(T)). If
we are only interested in the selection of the τ -best
classifiers a quick-select algorithm can also be applied.
Thus, the complexity of the ordering or of the selection
operation is linear, in contrast to the quadratic time-
complexity of the algorithms proposed in (Mart́ınez-
Muñoz & Suárez, 2004), where the selection of each
classifier involves an evaluation over all the remaining
classifiers. The proposed ordering method also makes
it possible to give a criterion for selecting a subset of
classifiers to be considered for the inclusion in the final
ensemble. This avoids the use of a pruning percentage
that is fixed beforehand.

The article is structured as follows: In Section 2 we

introduce the ordering procedure in bagging ensem-
bles. Section 3 presents the proposed criterion for or-
dering. The results of experiments that illustrate the
performance of the pruned ensembles on several UCI
datasets (Blake & Merz, 1998) are discussed in Sec-
tion 4. Finally, the conclusions of this research are
presented.

2. Ordering Bagging Ensembles

Let L = (xi, yi), i = 1, 2, ..., N be a collection of N
labeled instances. The training examples are charac-
terized by a vector of attributes xi ∈ χ and a discrete
class label yi ∈ φ ≡ {1, 2, . . . , C}. Consider a learning
algorithm that constructs a classifier, h, from a given
training set L. This classifier produces a classification
y ∈ φ of a new instance x ∈ χ by a mapping h : χ → φ.

In bagging (Breiman, 1996a) a collection of classifiers
is generated by training each inducer with a different
dataset. These datasets are obtained by sampling with
replacement from the original training set L with N
extractions (bootstrap sampling). The final classifica-
tion is obtained by combining with equal weights the
decisions of the individual classifiers in the ensemble.
An instance x is thus classified according to the rule

argmax
k

(

T
∑

t=1

I(ht(x) = k)

)

: k = 1, 2, . . . , C , (1)

where T is the number of classifiers and I is the indi-
cator function such that I(True) = 1, I(False) = 0.
The order in which classifiers are aggregated in bag-
ging is irrelevant for the classification given by the full
ensemble.

The rationale for modifying the aggregation ordering
in a bagging ensemble is to construct small subensem-
bles with good classification performance. As stated
in the introduction, the combinatorial problem of iden-
tifying the optimal subensemble is NP-complete (Ta-
mon & Xiang, 2000) and becomes intractable for rela-
tively small ensembles (T > 30). Instead of solving the
optimization problem exactly, we use an approximate
procedure: Assume we have identified a subensemble
composed of τ − 1 classifiers, which is close to being
optimal. A near-optimal ensemble of size τ is built by
selecting from the pool of remaining classifiers (of size
T − (τ − 1)) the classifier that maximizes a quantity
that is correlated with the generalization performance
of the ensemble of size τ . We have performed exten-
sive experiments using exhaustive search for small en-
sembles (up to 31 classifiers) and global optimization
tools, such as genetic algorithms, for larger ensembles,
that show that this greedy search is efficient in finding
near-optimal ensembles

Pruning in Ordered Bagging Ensembles

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 20 40 60 80 100 120 140 160 180 200

er
ro

r

number of classifiers

segment

bagging
ordered

Figure 1. Average test and train error for the Segment

dataset for bagging and ordered bagging according to the
proposed heuristic.

Figure 1 shows the typical dependence of the classifica-
tion error with the ensemble size in randomly ordered
bagging (the standard version of bagging, where the
order in which classifiers are aggregated is dictated by
the bootstrap procedure) and in ordered bagging en-
sembles. This figure displays the error curves for both
the training and the test set (Segment dataset). Re-
sults are averaged over 100 executions of bagging with
random ordering (solid line) and of ordered bagging
(long trait line). The error for bagging ensembles with
random ordering generally decreases monotonically as
the number of classifiers included in the ensemble in-
creases, approaching saturation at a constant error
level for large ensembles. For the ordered ensembles
both the test and training error curves reach a min-
imum at an intermediate number of classifiers. The
error rate at this minimum is lower than the error of
the full ensemble. Note that the minimum of the error
curve for the training set is achieved for smaller ensem-
bles than in the test set. This means that the location
of the minimum in the training error curve cannot be
directly used to determine the optimal subensemble
size. In this example the minimum in the training set
error is achieved with 14 classifiers, whereas the best
results for the test set are obtained in ensembles that
contain 44 classifiers. It is in general difficult to give
a reliable estimate of the optimal number of classifiers
to get the best generalization accuracies. Nonetheless,
Fig. 1 also shows that the minimum in the test error
is fairly broad, and that, for a large range of sizes, the
ordered subensembles have a generalization error that
is under the final bagging error. This implies that it
should be easy to identify pruned ensembles with im-
proved classification accuracy.

3. Orientation Ordering

For the ordering procedure to be useful the quantity
that guides the selection of the classifiers should be a
reliable indicator of the generalization performance of
the ensemble. Measures based on individual properties
of the classifiers (for instance, selecting first classifiers
with a lower training error) are not well correlated
with the classification performance of the subensem-
ble. It is necessary to employ measures, such as diver-
sity (Margineantu & Dietterich, 1997), that contain in-
formation of the complementariness of the classifiers.
In this work, the quantity proposed measures how a
given classifier maximizes the alignment of a signa-
ture vector of the ensemble with a direction that cor-
responds to perfect classification performance on the
training set.

Consider a dataset Ltr composed of Ntr examples. De-
fine ct, the signature vector of the classifier ht for the
dataset Ltr, as the Ntr-dimensional vector whose com-
ponents are

cti = 2I(ht(xi) = yi) − 1, i = 1, 2, . . . , Ntr , (2)

where cti is equal to +1 if ht (i.e. the tth unit in the
ensemble) correctly classifies the ith example of Ltr

and −1 otherwise. The average signature vector of
the ensemble is

cens =
1

T

T
∑

t

ct . (3)

In a binary classification problem, the ith component
of this ensemble signature vector is equal to the clas-
sification margin for the ith example (the margin is
defined as the difference between the number of votes
for the correct class and the number of votes for the
most common incorrect class, normalized to the inter-
val [−1, 1] (Schapire et al., 1998)). In general multi-
class classification problems, it is equal to 1−2edge(i)
of the ensemble for the ith example (the edge is defined
as the difference between the number of votes for the
correct class and the number of votes for all incor-
rect classes, normalized to the interval [0, 1] (Breiman,
1997)). The ith example is correctly classified by the
ensemble if the ith component of the average vector
cens is positive. That is, an ensemble whose average
signature vector is in the first quadrant of the Ntr-
dimensional space will correctly classify all examples
of the Ltr dataset.

This study presents an ordering criterion based on
the orientation of the signature vector of the indi-
vidual classifiers with respect to a reference direction.
This direction, coded in a reference vector, cref , is

Pruning in Ordered Bagging Ensembles

 0

 500

 1000

 1500

 2000

 2500

 3000

-50 0 50 100 150 200 250 300

z

x

bagging
ordered

-20

 0

 20

 40

 60

 80

 100

-50 0 50 100 150 200 250 300

y

x

bagging
ordered

-50
 0

 50
 100

 150
 200

 250
 300 -20

 0
 20

 40
 60

 80
 100

 0
 500

 1000
 1500
 2000
 2500
 3000

z

bagging
ordered

x y

z

Figure 2. Projection of the unordered and ordered bagging
signature vectors onto: two dimensions cens (z axis) and
cref (x axis) (top plot), two dimensions cref and an axis
perpendicular to cref and cens (y axis) (middle plot) and
in the three dimensions previously defined (bottom plot).
Plots are for the Waveform problem.

the projection of the first quadrant diagonal onto the
hyper-plane defined by cens. The classifiers are or-
dered by increasing values of the angle between the
signature vectors of the individual classifiers and the
reference vector cref . Finally, the fraction of the clas-
sifiers whose angle is less than π/2 (i.e. those within

the quadrant defined by cref and cens) are included
in the final ensemble. The reference vector, cref , is
chosen to maximize the torque on cens (which repre-
sents the central tendency of the full ensemble) along
the direction that corresponds to the ideal classifica-
tion performance. This effect is obtained by choosing
cref = o + λcens, where o is a vector oriented along
the diagonal of the first quadrant, and λ is a constant
such that cref is perpendicular to cens (cref⊥cens).

As an example, consider a training set composed
of three examples and an ensemble with cens =
{1, 0.5,−0.5}, meaning that the first example is cor-
rectly classified by all the classifiers of the ensem-
ble, the second by 75% of classifiers and the third
by 25% of classifiers. Then the projection is calcu-
lated considering that cref = o+λcens and cref⊥cens,
which gives λ = −o · cens/|cens|

2. Hence, λ = −2/3
and cref = {1/3, 2/3, 4/3}. In the ordering phase, a
stronger pull will be felt along the dimensions corre-
sponding to examples that are harder to classify by
the full ensemble (i.e. the third and second examples).
However, cref becomes unstable when the vectors that
define the projection (i.e. cens and the diagonal of the
first quadrant) are close to each other. This makes
the selection of cref less reliable and renders the or-
dering process less efficient. This is the case for en-
sembles that quickly reach zero training error, such
as boosting or bagging composed of unpruned trees,
which do not show significant improvements in classi-
fication performance when reordered according to the
proposed heuristic.

In Figure 2 the learning processes in bagging and in or-
dered bagging are depicted. A 200 classifier ensemble
is trained to solve the Waveform problem (Breiman
et al., 1984) using 300 data examples (i.e. the sig-
nature vectors have 300 dimensions). These plots
show 2 and 3-dimensional projections of the walks fol-
lowed by the incremental sum of the signature vec-
tors (

∑τ

t=1
ct; τ = 1, 2, . . . , T) in the randomly or-

dered ensemble (solid line) and in the ordered ensem-
ble (long trait line). In the top plot the ensemble vec-
tors are projected onto the plane defined by cens (z
axis) and by cref (x axis). The middle plot shows a
2-dimensional projection onto a plane perpendicular
to cens, defined by cref (x axis) and a vector perpen-
dicular to both cens and cref (y axis). This plot is
a projection into a plane that is perpendicular to the
vector that defines the ensemble, cens; therefore any
path including all classifiers starts and finishes at the
origin. Finally, the bottom plot shows a 3-dimensional
projection onto the previously defined x, y and z axis.
For bagging (solid lines) it can be observed that the in-
cremental sum of the signature vectors follows a path

Pruning in Ordered Bagging Ensembles

that can be seen as a Brownian bridge starting at the
origin and with a final value of T ×cens. The ordering
algorithm (long trait line) rearranges the steps of the
original random path in such a way that the first steps
are the ones that approximate the walker the most
to cref : Hence the characteristic form of the ordered
path, which appears elongated toward the direction of
cref . These plots show the stochastic nature of the
bagging learning process ((Breiman, 2001; Esposito &
Saitta, 2004)) and how this process can be altered by
re-ordering its classifiers.

4. Experimental Results

In order to assess the performance of the ordering
procedure described in the previous section, experi-
ments are carried out in 18 classification problems from
the UCI-repository (Blake & Merz, 1998) and from
Refs. (Breiman, 1996b; Breiman et al., 1984). The
datasets have been selected to test the performance of
the pruning procedure on a wide variety of problems,
including synthetic and real-world data from various
application fields with different numbers of classes and
attributes. Table 1 shows the characteristics of the
sets investigated. For each dataset this table presents
the number of examples used to train and test the en-
sembles, the number of attributes and the number of
classes. The subdivisions into training and testing are
made using approximately 2/3 of the set for training
and 1/3 for testing except for the Image Segmentation

set, where the sizes specified in its documentation are
used. For the synthetic sets (Waveform and Twonorm)
different training and testing sets were generated in
every execution of the algorithm.

For each dataset 100 executions were carried out, each
involving the following steps: (i) Generate a stratified
random partition (independent sampling for the syn-
thetic datasets) into training and testing sets whose
sizes are given in Table 1. (ii) Using bootstrap sam-
pling, 200 CART decision trees are generated from the
training set. The decision trees are pruned accord-
ing to the CART 10-fold cross validation procedure
(Breiman et al., 1984). The ensemble generalization
error is estimated in the unseen test set. This test
error is calculated for a bagging ensemble that uses
the first 100 classifiers generated and for a bagging en-
semble containing all 200 trees. (iii) The trees in the
ensemble are then ordered according to the rule de-
scribed in Section 3 using the training subset. Finally,
we calculate the average of the signature vector angles
for vectors whose angle with respect to cref is lower
than π/2. Only classifiers whose signature vector an-
gle is less than this average are included in the pruned

Table 1. Characteristics of the datasets used in the exper-
iments.

Dataset Train Test Attribs. Classes

Audio 140 86 69 24
Australian 500 190 14 2
Breast W. 500 199 9 2
Diabetes 468 300 8 2
German 600 400 20 2
Heart 170 100 13 2
Horse-Colic 244 124 21 2
Ionosphere 234 117 34 2
Labor 37 20 16 2
New-thyroid 140 75 5 3
Segment 210 2100 19 7
Sonar 138 70 60 2
Tic-tac-toe 600 358 9 2
Twonorm 300 5000 20 2
Vehicle 564 282 18 4
Vowel 600 390 10 11
Waveform 300 5000 21 3
Wine 100 78 13 3

subensemble. This rule gives a reasonable estimate of
the number of classifiers needed for an optimal general-
ization performance. In fact, any rule that selects the
first 20-30% of the classifiers in the ordered ensemble
achieves a similar generalization accuracy.

Figure 3 displays ensemble error curves for 3 of the
classification problems considered. The behavior of
the ensemble error curves is similar for the remaining
problems. These plots show the dependence of the av-
erage train (bottom curves in each plot) and test (top
curves in each plot) errors on the number of classi-
fiers included in the subensemble for randomly ordered
bagging (solid line) and for orientation ordered bag-
ging using 100 (dotted line) and 200 trees (trait line).
As expected, in unordered bagging the error decreases
monotonically as the number of classifiers in the en-
semble grows and reaches a constant error rate asymp-
totically. In contrast to this monotonic behavior, error
curves in ordered bagging ensembles exhibit a typical
shape where the error initially decreases with the num-
ber of classifiers, reaches a minimum, and eventually
rises and reaches the error of the full bagging ensem-
ble. This characteristic shape is reproduced in both
the train and test error curves and for ensembles of
100 and 200 trees. It is important to note that this
minimum is achieved for a smaller number of classifiers
in the training set than in the test set. In the training
set the minima appear generally for a fraction of clas-
sifiers that is under 10% of the initial pool. For the
test curves the minima appear for subensemble whose

Pruning in Ordered Bagging Ensembles

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 20 40 60 80 100 120 140 160 180 200

er
ro

r

number of classifiers

audio

bagging
ordered 200
ordered 100

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0 20 40 60 80 100 120 140 160 180 200

er
ro

r

number of classifiers

german

bagging
ordered 200
ordered 100

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 20 40 60 80 100 120 140 160 180 200

er
ro

r

number of classifiers

waveform

bagging
ordered 200
ordered 100

Figure 3. Train and test error curves for Bagging (solid
line), ordered bagging with 200 trees (trait line) and 100
trees (dotted line) for Audio, German and Waveform clas-
sification problems.

size ranges between 20%-40% of the original classifiers.
This fact makes it difficult to use directly the train-
ing error curve minimum to estimate the number of
classifiers that produce the best generalization error.
Furthermore, this estimation becomes more difficult
when considering each execution individually (instead
of the smooth averaged curves) since the curves are
more bumpy and do not always show clear minima.

In any case, given that the minima are fairly flat, the
range of valid pruning values that lead to a reduction
the mean generalization error of bagging is broad.

Table 2 shows the results for the classification prob-
lems investigated. The values reported are averages
over 100 executions. Note that the figures displayed
in Table 2 and the values of the test curves shown in
figure 3 do not always coincide, since the former is an
average for different subensemble sizes, whereas the
latter is an average for a fixed number of classifiers.
The second column displays the test error when con-
sidering the full ensemble of size 200 and the third col-
umn gives the test error for the ordered ensemble using
the corresponding fraction of classifiers. The average
number of classifiers used for calculating the general-
ization accuracy of the ordered ensembles is shown in
the fourth column. As a reference, we run the reduce-
error (RE) pruning algorithm without back-fitting 1

(Margineantu & Dietterich, 1997), using the same en-
sembles and with a near-optimal pruning rate of 80%
(i.e. 41 classifiers of 200 and 21 of 100). This heuristic
chooses at each ordering step the classifier that re-
duces most the training error of the already selected
subensemble. The test error of the reduce-error algo-
rithm is shown in fifth column.

The proposed method always reduces the average gen-
eralization error for the studied datasets using a small
subset of the classifiers of the full ensemble. This num-
ber of classifiers in the pruned ensembles varies from
33 of 200 for the German dataset to 58 of 200 for
Vowel. The improvements in classification accuracy of
the presented method with respect to bagging are sta-
tistically significant at a 99.99% confidence level (us-
ing a paired two tailed Student’s t-test) in all problems
investigated, with the exception of Australian and Di-

abetes. For these sets the differences are significant
for ensembles of 200 trees but with a lower confi-
dence level (95%). However, we should be cautious
about the confidence levels in the real-world datasets
since the statistical test may overestimate its signif-
icance (Nadeau & Bengio, 2003). For the synthetic
datasets the confidence levels are perfectly valid as the
experiements were carried out using independent sam-
pling. In comparison with reduce-error pruning the
proposed method obtains similar or slightly better re-
sults. Its generalization error is lower in 11 out of 18
datasets, equal on 3 and worse on 4.

1We choose not to show the results with back-fitting
because for this experiment configuration not using back-
fitting is the most efficient selection. The generalization
error with and without back-fitting are equivalent (within
±0.3%) and the execution time increases substantially
when using back-fitting.

Pruning in Ordered Bagging Ensembles

Table 2. Average test error in %.

bagging (200 trees) bagging (100 trees)

full ordered size re-41 full ordered size re-21

Audio 30.2±4.1 24.4±3.7 38.6 24.4±3.9 30.2±3.9 24.8±3.7 19.1 25.0±4.0
Australian 14.5±2.1 14.1±2.2 38.0 13.7±2.3 14.5±2.1 14.3±2.2 18.9 14.0±2.3
Breast W. 4.7±1.5 4.1±1.3 40.9 4.1±1.3 4.7±1.5 4.2±1.3 20.2 4.1±1.3
Diabetes 24.9±1.8 24.5±2.0 36.6 24.4±1.9 24.9±1.7 24.7±1.9 18.5 24.6±2.1
German 26.6±1.6 25.4±1.7 32.9 25.1±1.7 26.6±1.7 25.6±1.7 16.8 25.5±1.7
Heart 20.4±4.3 18.5±3.7 40.9 18.9±3.6 20.3±4.2 19.0±3.3 20.0 19.6±3.4
Horse-colic 17.7±2.9 16.0±2.8 32.9 15.5±2.4 17.5±2.9 16.3±2.9 16.4 15.8±2.5
Ionosphere 9.3±2.5 7.4±2.3 38.5 7.6±2.5 9.4±2.4 7.7±2.4 19.3 7.6±2.4
Labor 14.4±7.8 10.0±6.7 45.7 12.3±7.6 14.6±7.7 10.0±6.7 23.0 12.1±7.6
New-Thyroid 7.3±3.1 5.7±2.6 44.2 6.2±2.6 7.5±3.1 5.8±2.5 22.0 6.1±2.8
Segment 9.7±1.7 7.8±1.1 41.7 8.0±1.1 9.8±1.7 8.0±1.1 21.1 8.2±1.1
Sonar 24.7±4.7 20.7±5.1 47.1 21.5±4.8 24.6±4.7 21.7±4.6 23.2 21.9±4.7
Tic-tac-toe 2.7±1.1 2.0±0.8 48.8 2.3±1.0 2.7±1.1 2.3±0.9 24.5 2.6±1.1
Twonorm 9.3±3.1 6.5±1.0 51.3 8.7±2.0 9.5±3.1 7.5±1.0 25.6 9.6±1.8
Vehicle 29.6±2.2 26.5±2.1 41.0 26.5±1.9 29.5±2.2 26.9±2.0 20.7 26.9±2.0
Vowel 13.7±2.2 12.1±2.0 58.3 13.6±2.1 14.0±2.2 12.8±2.1 29.2 14.1±2.2
Waveform 22.8±2.5 19.6±1.2 42.0 20.0±1.3 23.0±2.4 20.3±1.2 20.7 20.6±1.3
Wine 6.5±4.0 4.8±2.9 44.7 5.8±3.5 6.6±4.2 5.1±2.9 22.4 6.2±3.6

In a second batch of experiments we investigate how
the number of classifiers in the original bagging ensem-
ble affects the performance of the ordered ensembles.
For these experiments the generated ensembles were
re-evaluated using the first 100 trees of the randomly
ordered bagging ensemble of size 200. The ordering
algorithm is then applied to this smaller pool of clas-
sifiers. The average generalization error curve for the
randomly ordered ensemble of size 100 and for the or-
dered one are shown in Table 2 in the sixth and sev-
enth columns, respectively. The number of classifiers
in the pruned subensemble selected from the ordered
ensembles of size 100 are shown in the eighth column.
In the datasets investigated, a bagging ensemble with
100 trees seems to be large enough to achieve the best
possible classification performance of bagging. Slight
improvements are observed for some sets (New-thyroid,
Sonar, Waveform,...) when using the larger ensemble
but also small error increases (Heart and Horse-colic).
For ordered ensembles, the results reported in Table
2 show that there are small but systematic improve-
ments in classification accuracy for the larger ensem-
bles, at the expense of using pruned ensembles with
approximately twice as many classifiers. The curves
plotted in Figure 3, show that initially there is a steep
parallel descent of the error curves for both ordered
ensembles of size 100 and 200 and for both train and
test curves up to a point that depends on the dataset.
From this point onwards, the curves of the smaller en-
sembles slow their descent until they reach a minimum.
The error curves for the ordered ensemble of size 200

Table 3. Average ordering time (s) for orientation ordering
(OO) and reduce-error (RE) for different ensemble sizes.

Size 50 100 200 400 800 1600

OO 0.012 0.025 0.048 0.089 0.177 0.355
RE 0.268 1.053 4.181 16.69 66.83 268.5

continue to decrease with a smaller negative slope and
finally reach a flatter minimum.

Finally, Table 3 shows the time needed for pruning
using orientation ordering (OO) and reduce-error or-
dering without back-fitting (RE) (Margineantu & Di-
etterich, 1997) for 50, 100, 200, 400, 800 and 1600 trees
and for the Pima Indian Diabetes set. The values re-
ported in this table are averages over 10 executions
using a Pentium IV at 3.2 MHz. The results displayed
in this table clearly show the approximately linear be-
havior of the proposed method, in contrast to longer
execution times and quadratic dependence on the size
of the ensemble for the reduce-error pruning.

5. Conclusions

This article presents a novel method for pruning bag-
ging ensembles that consistently reduces the general-
ization error for the studied datasets by using a frac-
tion of the classifiers of the complete bagging ensemble.
The fraction of selected classifiers varies from 15% to

Pruning in Ordered Bagging Ensembles

30% (i.e. 30-60 classifiers of 200) of the full generated
bagging ensemble. This is a clear improvement over
full bagging both in storage needs and in classification
speed, which is a crucial point for on-line applications.
Furthermore, for applications where the classification
speed is a critical issue the number of selected classi-
fiers can be further reduced (up to about 10 classifiers,
depending on the dataset) without a significant dete-
rioration of the generalization performance.

The presented method executes in quick-sort running
time (or quick-select time if only the best classifiers are
selected). This compares favorably to the quadratic
running time of previous ordering methods or to the
running times of genetic algorithms used in earlier
methods for ensemble pruning.

Acknowledgments

The authors acknowledge financial support from the
Spanish Dirección General de Investigación, project
TIN2004-07676-C02-02.

References

Bakker, B., & Heskes, T. (2003). Clustering ensembles
of neural network models. Neural Networks, 16, 261–
269.

Blake, C. L., & Merz, C. J. (1998). UCI repository of
machine learning databases.

Breiman, L. (1996a). Bagging predictors. Machine

Learning, 24, 123–140.

Breiman, L. (1996b). Bias, variance, and arcing classi-

fiers (Technical Report 460). Statistics Department,
University of California.

Breiman, L. (1997). Arcing the edge (Technical Re-
port). University of California, Berkeley, CA.

Breiman, L. (2001). Random forests. Machine Learn-

ing, 45, 5–32.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone,
C. J. (1984). Classification and regression trees. New
York: Chapman & Hall.

Dietterich, T. G. (2000). An experimental comparison
of three methods for constructing ensembles of de-
cision trees: Bagging, boosting, and randomization.
Machine Learning, 40, 139–157.

Domingos, P. (1997). Knowledge acquisition from ex-
amples via multiple models. Proc. 14th Interna-

tional Conference on Machine Learning (pp. 98–
106). Morgan Kaufmann.

Esposito, R., & Saitta, L. (2004). A monte carlo analy-
sis of ensemble classification. ICML ’04: Proceedings

of the twenty-first international conference on Ma-

chine learning (pp. 265–272). New York, NY, USA:
ACM Press.

Freund, Y., & Schapire, R. E. (1995). A decision-
theoretic generalization of on-line learning and an
application to boosting. Proc. 2nd European Con-

ference on Computational Learning Theory (pp. 23–
37).

Giacinto, G., & Roli, F. (2001). An approach to the
automatic design of multiple classifier systems. Pat-

tern Recognition Letters, 22, 25–33.

Margineantu, D. D., & Dietterich, T. G. (1997). Prun-
ing adaptive boosting. Proc. 14th International

Conference on Machine Learning (pp. 211–218).
Morgan Kaufmann.

Mart́ınez-Muñoz, G., & Suárez, A. (2004). Aggrega-
tion ordering in bagging. Proc. of the IASTED In-

ternational Conference on Artificial Intelligence and

Applications (pp. 258–263). Acta Press.

Mart́ınez-Muñoz, G., & Suárez, A. (2005). Switch-
ing class labels to generate classification ensembles.
Pattern Recognition, 38, 1483–1494.

Nadeau, C., & Bengio, Y. (2003). Inference for the
generalization error. Machine Learning, 52, 239–
281.

Prodromidis, A. L., & Stolfo, S. J. (2001). Cost
complexity-based pruning of ensemble classifiers.
Knowledge and Information Systems, 3, 449–469.

Schapire, R. E., Freund, Y., Bartlett, P. L., & Lee,
W. S. (1998). Boosting the margin: A new expla-
nation for the effectiveness of voting methods. The

Annals of Statistics, 12, 1651–1686.

Tamon, C., & Xiang, J. (2000). On the boosting prun-
ing problem. Proc. 11th European Conference on

Machine Learning (pp. 404–412). Springer, Berlin.

Webb, G. I. (2000). Multiboosting: A technique for
combining boosting and wagging. Machine Learn-

ing, 40, 159–196.

Zhou, Z.-H., & Tang, W. (2003). Selective ensemble
of decision trees. Lecture Notes in Artificial Intelli-

gence (pp. 476–483). Berlin: Springer.

Zhou, Z.-H., Wu, J., & Tang, W. (2002). Ensembling
neural networks: Many could be better than all. Ar-

tificial Intelligence, 137, 239–263.

